
 

 

Supplementary Figure 1. (a) Different antibodies were selected to test their 

specificity towards GBM cell lines to identify antibody candidates for the 

specific capture of tumor EVs. GBM20/3 cells were spiked at 1000 cells/mL in 

PBS. (b) EVs from GBM20/3 palmGFP cells were spiked into plasma to 

quantify tumor-specific message at different dilution ratios. (c) Comparison of 

the obtained enrichment ratios at the various stages of sample processing in 

the 
EV

HB-Chip (n = 3 technical replicates; ± s.e.m., *, ** p < 0.05, 1-way 

ANOVA). (d) Effect of antibody concentration on the capture of tumor-specific 

EVs ( n = 3 technical replicates; ± s.e.m., * p < 0.05, student t-test).  

 
 
 
 
 
 
 
 
 
 



 

 
 
 
Supplementary Figure 2. (a) Comparative confocal microscopy images of 

tumor EVs captured on the surface of the 
EV

HB-Chip with different isolation 

antibodies (e.g., concentration and different antibodies). (b) Normalized 

quantification of captured EVs on the surface of the 
EV

HB-Chip. (c) 

Comparison of the tumor-specific EV capture for different antibodies on the 

surface of the 
EV

HB-Chip. For data shown in (a) and (b) EVs were obtained 

from Gli36 cells; data in (c) was obtained using EVs from GBM20/3 with 

palmGFP. The cocktail of antibodies used for these experiments consisted of 

EGFRvIII, BAF231, PDGFR, Podoplanin, and Cetuximab; each antibody at a 

concentration of 10ug/mL. Cetuximab alone was used at a concentration of 20 

g mL-1. 

 



 

 
Supplementary Figure 3. (a) Comparison of retention of non-specific EVs on 

the 
EV

HB-Chip by RT-PCR quantification of the pro-platelet basic protein 

(PPBP). The total amount of PBPP present in EVs isolated using 

ultracentrifugation of bulk plasma (‘input’) is compared to the signal present in 

EVs isolated on the device. The same cocktail of antibodies used in 

Supplementary Figure 2 was used for these experiments. Cetuximab was 

used at a concentration of 20 g/mL. (b) Comparison of enrichment ratios for 

different dilutions of plasma (1/1, 1/10, 1/100) using an ultracentrifugation 

method and the EVHB-Chip. GBM20/3-GFP EVs spiked into plasma were 

used and Cetuximab was used as the capture antibody at a concentration of 

20 g mL-1. 

 

 

 



 

 

Supplementary Figure 4. (a) Schematic representation of the different 

chemistries used for capture antibody immobilization on the surface of the 

EV
HB-Chip. (I) zero-length spacer, (II) zero-length spacer on gelatin 

nanosubstrate, and (III) nm-PEG spacer on gelatin nanosubstrate. (b) 

Quantification of EVs captured on the surface of the microfluidic device for the 

different surface chemistries shown in (a) using confocal microscopy imaging. 

Ultimately, the combination of a nanostructure substrate and a nm-PEG linker 

on the surface of the microfluidic device maximized capture of tumor-EVs (III). 

For all experiments, Cetuximab was used as the capture antibody at 100 

g/mL (n =3 technical replicates; ± s.e.m., *, ** p < 0.05, 1-way ANOVA).   
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Supplementary Figure 5. (a) Thickness-growth curve of the gelatin 

nanocoating on a microfluidic substrate. (b) Change in the Zpotential of 

different populations of tumor-specific EVs (n = 3 technical replicates; ± 

s.e.m.). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



  

 

Supplementary Figure 6. Characterization of captured nanoparticle 

distribution across the surface of the microfluidic device. For each position, a 

10x10 tile confocal microscopy (field) image was used and then quantified 

using Image J.  
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Supplementary Figure 7. (a) Tumor-EV depletion on the EVHB-Chip when 

using an irrelevant, IgG control antibody (gray) and Cetuximab (red). (b) 

Comparison of the specificity of capture for GFP Gli36 EVs for Cetuximab 

(red) and an IgG control antibody (gray) on the EVHB-Chip; ddPCR was used 

to quantify the total number of EGFRvIII copies. All experiments used EVs 

generated from GFP Gli36 parental cells (n = 3 technical replicates; ± s.e.m.). 

 

 

 

 

 

 

 

 



 

Supplementary Figure 8. (a) Comparison of the capture of GBM20/3 

PalmGFP cells on a single 
EV

HB-Chip or two chips run in series of which the 

first chip was coated with control IgG. The capture was analyzed by 

automated scanning of the second chip. (b) Capture efficiencies of GBM20/3 

or Gli36 cells run through two chips in series. The first chip was coated with 

different control antibodies to analyze the effect on specific tumor cell capture 

in the second chip. Shown is the capture in the second 
EV

HB-Chip analyzed 

using automated scanning. (c) Comparison of capture efficiencies of GBM 

20/3-GFP EVs run through three 
EV

HB-Chip in series. Multiple dilutions of the 

EV-plasma sample were tested for binding to the surface of the device. 

Captured GBM20/3-GFP EVs were lysed, RNA was isolated, and capture 

efficiency was analyzed using a TaqMan assay for GFP. (d,e,f). Experimental 

setup with five 
EV

HB-Chip in series for the capture of tumor-specific GBM 



20/3-GFP EVs. A blank chip was used in front of the functionalized chips. The 

capture was analyzed by confocal imaging (d), and RNA was analyzed for 

GFP (capture efficiency; e) and the GFP/PPBP ratio (enrichment levels) (f). A 

total of n = 3 technical replicates were performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Supplementary Figure 9. Characterization of captured and released EVs 

from the surface of the EVHB-Chip. (a) Confocal fluorescence microscopy 

images before (top) and after (bottom) release of PalmtdTomato EVs by an 

increase of temperature from room temperature to 37°C. (b) Quantification of 

EV capture on the surface of the EVHB-Chip for different PEG-linker sizes. The 

bottom graph shows that over 87 % of captured EVs can be removed from the 

surface of the device (n = 3 technical replicates; ± s.e.m.). 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure 10. (a) Capture efficiency on the EVHB-Chip for 

spiked TdTomato Glio36 EVs in PBS. (n = 3 technical replicates; ± s.e.m.; 

EVHB-Chip conditions used were the same as our patient samples). (b)  

Quantification of the depletion of EVs before and after it was run through the 

EVHB-Chip. The lower particle count after the sample was flow through the 

EVHB-Chip is an indication of EV depletion. The initial and final particle count 

of EVs was calculated using a qNano instrument before and after the samples 

were run through the EVHB-Chip. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 11. The limit of detection of the EVHB-Chip by 

average fluorescence intensity of TdTomato Glio36 EVs. In (a) F represents 

the change in fluorescence intensity between a blank device and a device that 

was run with different concentrations of EVs (Particles/ L, n = 3 technical 

replicates; s.e.m.). (b) Typical images for the upper and lower limit of EV 

detection of the EVHB-Chip.   
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Supplementary Figure 12. (a) Average fluorescence intensity measurement 

of EVs captured on a microfluidic flat channel and an 
EV

HB-Chip. 

PalmtdTomato fluorescence EVs were spiked in PBS at 50 million EVs mL-1 (n 

= 3 technical replicates; ± s.e.m.). (b) Schematic representation of the Hele-

Shaw device used to calculate the shear stress (𝑤) of EVs on microfluidic 

channels using the equation of Usami.1 Where: L is the length in mm, w is the 

width in mm, h is the height in m (for our case was set to 47 m),  is the 

viscosity of the fluid carrying the EVs, Q is the input flow rate, and x/L 

represents the normalized position at which the shear stress will be 

calculated. (c) Characterization of the shear stress in the Hele-Shaw device 

for two different flow rates (n = 3 technical replicates; ± s.e.m.). We performed 

experiments at two different flow rates (Q): At 1 mL h-1 (blue circles), the shear 

stress experienced by the EVs was 0.11 to 1.1 dyn cm
-2

 with a drop of 19.6 % 

in the fluorescence intensity of captured EVs. When the flow rate was 3 mL h-1 

(open circles), the shear stress values were between 0.32 to 3.17 dyn cm-2 

with a drop of 92.8 % in the fluorescence intensity of captured EVs. Therefore, 

we chose a flow rate of 1 mL h-1 to maximize specificity and EV capture. 
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Supplementary Figure 13. Schematic representation of patient sample 

processing using the EVHB-Chip.  
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Supplementary Figure 14. Enrichment and specificity towards tumor-specific 

EVs (EGFRvIII). GAPDH was used as a control gene to demonstrate the 

specificity. 
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Supplementary Figure 15. Comparison of upregulated and downregulated 

genes between ultracentrifugation (U) and the EVHB-Chip (C) for each GBM 

patient. 

 



 

 

 

Supplementary Figure 16. Comparison of upregulated and downregulated 

genes in patients and healthy controls.  The listed genes were previously 

identified in different types of cancers (see Supplementary Table 4).  
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Supplementary Figure 17. Genes that were identified in EVs and 

categorized based on previously identified GBM subtype genes. 
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Supplementary Table 1. Clinical data for cancer patients. 

  

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Age 52 58 59 70 74 66 62 80 62 64 57 58 60

Sex - F M M M M Male Female Male Male Male Female Female

Location Brain Stem L. Temporal R. Frontal L. Temporal L. Temporal L. Temporal Temporal Temporal Parietal
Frontal, cingulate 

bilaterally
Temporal Frontal Frontotemporal

Unifocal/Multifocal Unifocal Unifocal Unifocal Unifocal Unifocal Unifocal Unifocal Unifocal Unifocal Multifocal Unifocal Unifocal Unifocal

Invades Callosum Yes No No NTD No No No No No Yes No No Yes

Radiology
Ring enhancing 

lesion
Cystic Hemorrhagic

Ring enhancing 

lesion

Ring enhancing 

lesion
Cystic

Ring enhancing 

lesion

Ring enhancing 

lesion

Ring enhancing 

lesion

Ring enhancing 

lesion, Multifocal 

bilateral disease

Ring enhancing 

lesion

Patchy 

enhancement

Ring 

enhancement

Ventricle involved
Mass extends to 

it
No - NTD No No Yes Yes Yes Yes No Yes Yes

Prior hemorrhage Yes NA Possible - NTD NTD Yes No No No No No No

Histology Glioblastoma Glioblastoma
Glioblastoma 

(small cell)
Glioblastoma Glioblastoma Glioblastoma Glioblastoma Glioblastoma Glioblastoma Glioblastoma Glioblastoma

Anaplastic 

Oligodendroglioma
Glioblastoma

Mitosis Numerous Numerous Numerous Yes Yes Yes - - - - - 6.60% -

Necrosis Extensive Extensive Extensive Extensive Yes - Yes Yes Yes Yes Yes No Yes

MIB1 4 to 7 % 40% NTD 30% NTD 40% - - - - - 6.60% Yes

IDH1 Negative Negative NTD Negative NTD Negative WT WT WT WT WT Mutant No

Tissue: EGFRvIII Yes No Yes No No No - - - - - - -

CSF: EGFRvIII No No Yes Not Tested No Yes Not Tested Not Tested Not Tested Not Tested Not Tested Not Tested Not Tested

Microfluidic Chip: 

EGFRvIII
No Yes Yes Yes Yes Yes Not Tested Not Tested Not Tested Not Tested Not Tested Not Tested Not Tested

Serum/Plasma Serum Plasma Plasma Serum Plasma Plasma Plasma Plasma Plasma Plasma Plasma Plasma Plasma

Additional
Negative for 

PDGFRa

Positive for 

GFAP

Negative for 

1p/19q

Positive for 

EGFR
-

Negative for 

MGMT 

methylation; 

positive for 

EGFR

EGFR amplified, 

MGMT 

methylated, 

KRAS Mutant

MGMT 

methylated

EGFR amplified, 

MGMT 

methylated

BIOPSY (no 

resection)   

EGFR amplified

EGFR amplified
1p-19q co-deleted, 

p53 positive

MET amplified, 

MGMT 

methylated



Supplementary Table 2. RNA integrity number (RIN) and concentration 
values of first six GBM patients and healthy controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Pt1 Pt2 Pt3 Pt4 Pt5 Pt6

RIN (from Chip) 1.2 2.4 1.4 1.8 2.3 2.2

RIN (unprocessed) 2.5 2.1 1.7 1 2.1 1.6

Concentration (from 

Chip) [pg/mL]
82 141 105 58 80 133

Concentration 

(unprocessed) [pg/mL]
142 84 45 34 37 68

H1 H2 H3 H4 H5 H6

RIN (from Chip) 2.2 2.2 2.2 1 1.1 1.4

RIN (unprocessed) 1.6 2.2 2.4 1.1 1 1.1

Concentration (from 

Chip) [pg/mL]
111 86 669 35 45 52

Concentration 

(unprocessed) [pg/mL]
69 78 97 53 26 19



Supplementary Table 3. GBM specific genes differentially expressed genes 
in patient and healthy donor samples.  

Gene 

Function/Role in disease Previously 

Identified 

in EVs 

Reference 

ABCC3 
Encodes for transport proteins of 
different molecules in and out of the 
cell membrane. Involve in 
mechanisms of drug resistance.  

N 

2 

ACSL4 

Encodes for proteins that are 
involved in posttranslational 
modification for certain types of 
cancer. Overexpression of ACSL4 
promotes tumor cell survival for 
preventing apoptosis. 

N 

3 

ACTN1 
Adhesion-related molecules 
enriched in the epithelial to 
mesenchymal transition signaling 
pathway.  

N 

4 

ALOX12 Active ALOX12 protein affects 
development to skin tumor. 

N 5 

AMFR 
High expression promotes in vitro 
migration and invasion of glioma 
cells 

N 
6 

ARHGEF7 
One of three genes of which its 
methylation signature allows the 
prediction of metastasis-free cancer 
and overall survival. 

Y 

7, 8 

ATP1B2 
Transcript of this gene is 
significantly lower in primary 
glioblastomas than in diffuse 
astrocytomas. 

N 

9 

ATP2A3 Cancer susceptibility. N 10 

BASP1 This gene is upregulated in GBM 
after SOX2 knockdown.   

Y 11 

CD151 

The protein encoded by this gene is 
a member of the transmembrane 4 
superfamily, also known as the 
tetraspanin family. Most of these 
members are cell-surface proteins 
that are characterized by the 
presence of four hydrophobic 
domains. The proteins mediate 
signal transduction events that play 
a role in the regulation of cell 
development, activation, growth, and 
motility. This encoded protein is a 
cell surface glycoprotein that is 
known to complex with integrins and 
other transmembrane 4 superfamily 
proteins. It is involved in cellular 
processes including cell adhesion 
and may regulate integrin trafficking 
and/or function. This protein 
enhances cell motility, invasion, and 

N 

12, 13 



metastasis of cancer cells. Multiple 
alternatively spliced transcript 
variants that encode the same 
protein have been described for this 
gene. Overexpression of CD151 
affects cancer invasion and 
metastasis.  

CDC14B 
Acts upstream of skp2/p21/p27 
pathway, promoting skP2 
degradation through Ser64 
dephosphorylation.  

N 

14 

CDKN1A 

This gene encodes a potent cyclin-
dependent kinase inhibitor. The 
encoded protein binds to and inhibits 
the activity of cyclin-cyclin-
dependent kinase2 or -cyclin-
dependent kinase4 complexes, and 
thus functions as a regulator of cell 
cycle progression at G1. The 
expression of this gene is tightly 
controlled by the tumor suppressor 
protein p53, through which this 
protein mediates the p53-dependent 
cell cycle G1 phase arrest in 
response to a variety of stress 
stimuli. This protein can interact with 
proliferating cell nuclear antigen, a 
DNA polymerase accessory factor, 
and plays a regulatory role in S 
phase DNA replication and DNA 
damage repair. This protein was 
reported to be specifically cleaved 
by CASP3-like caspases, which thus 
leads to a dramatic activation of 
cyclin-dependent kinase2, and may 
be instrumental in the execution of 
apoptosis following caspase 
activation. Mice that lack this gene 
can regenerate damaged or missing 
tissue. Multiple alternatively spliced 
variants have been found for this 
gene.  

N 

15 

CEP19 

The protein encoded by this gene 
localizes to centrosomes and 
primary cilia and co-localizes with a 
marker for the mother centriole. 
Morbid obesity results from the 
inactivation of the ciliary protein 
CEP19. 

N 

16, 17 

CLDN5 

This gene encodes a member of the 
claudin family. Claudins are integral 
membrane proteins and components 
of tight junction strands. Has a 
possible correlation with Glioma 
tumor grade.   

N 

18 

CLEC2L 

CLEC2L may be involved in the 
cellular cross-talk of Purkinje cells 
and other neurons with brain-
resident cells or brain-infiltrating 
immune cells. 

N 

19 



CREG2 
CREG is a secreted glycoprotein 
that enhances differentiation of 
pluripotent stem cells. 

N 
20 

CXCL5 
This protein is thought to play a role 
in cancer cell proliferation, migration, 
and invasion. 

N 
21 

E2F3 

E2F3 is the dominant effector of 
miR-195-mediated cell cycle arrest. 
High levels of E2F3 protein activate 
the transcription of genes promoting 
cell cycle progression, which leads 
to abnormal cell proliferation. 

N 

22 

EMHT2 

Reportedly involved with important 
cancer-sustaining cellular activities 
such as cell proliferation, autophagy, 
EMT, metabolic changes, specific 
responses to hypoxia and cancer 
stemness 

N 

23 

EI24 

Etoposide-induced gene 24 (Ei24) is 
a p53 target gene that inhibits 
growth, induces apoptosis and 
autophagy, as well as suppresses 
breast cancer. 

N 

24 

GADD45A 

Gadd45 genes have been implicated 
in stress signaling in response to 
physiological or environmental 
stressors, which results in cell cycle 
arrest, DNA repair, cell survival, and 
senescence, or apoptosis. 

N 

25 

GAS2L1 

Members of the GAS2 family 
mediates the crosstalk between 
filamentous actin (F-actin) and 
microtubules which have an 
important role in cell polarization and 
cell motility 

N 

26 

GJC1 

This gene is a member of the 
connexin gene family and a 
component of a gap junction. Acts 
as a tumor suppressor in most 
cancer cells. 

N 

27 

GRIA1 
Marker for Glioma-initiating cells, 
and potentially a marker for 
predicting Ca2+ sensitivity of the 
cells. 

N 

28 

GUCY1A3 

This gene encodes the alpha 
subunit of the soluble guanylate 
cyclase (sGC), which catalyzes the 
conversion of GTP (guanosine 
triphosphate) to cGMP (cyclic 
guanosine monophosphate). sGC 
interacts with Nitric Oxide and has a 
role in the induction of angiogenesis 
in human glioma cell lines. 

N 

29 

GUCY1B3 

This gene encodes the beta subunit 
of the soluble guanylate cyclase 
(sGC), which catalyzes the 
conversion of GTP (guanosine 
triphosphate) to cGMP (cyclic 
guanosine monophosphate). sGC 
interacts with Nitric Oxide and has a 

N 

29 



role in the induction of angiogenesis 
in human glioma cell lines. 

ID1 

ID proteins, which are cell fate 
determinants, are involved in a 
broad range of processes 
associated with tumorigenesis. For 
example, ID proteins promote cell 
proliferation by suppressing cell-
cycle–negative regulators. 

N 

30 

ID3 

ID proteins, which are cell fate 
determinants, are involved in a 
broad range of processes 
associated with tumorigenesis. For 
example, ID proteins promote cell 
proliferation by suppressing cell-
cycle–negative regulators 

N 

30 

IRAK3 

Exerts an overall inhibitory effect on 
inflammatory response. Also, inhibits 
TLR7-mediated production of 
cytokines and chemokines at 
translational levels. 

N 

31 

ITGB3 

Participate in cell adhesion as well 
as cell-surface mediated signaling. 
Also, ITGB3 is implicated in glioma 
cell death/survival and drug 
resistance. 

N 

32 

KBTBD7 

Cullin 3 (Cul3)/KBTBD7 complex 
controls both the regulated 
proteasomal degradation of 
neurofibromin(NF1) and the 
pathogenic destabilization of 
neurofibromin in glioblastomas. 

N 

33 

KIAA0513 
KIAA0513 is likely to be involved in 
signaling pathways related to 
neuroplasticity, apoptosis, and 
cytoskeletal regulation 

N 

34 

KLHL2 
KLHL12 has a role in 
oligodendrocyte process formation. 
Also associated with ubiquitylation, 
aggregation and neuronal apoptosis. 

N 

35 

KRAS 
RAS proteins functions in cellular 
signal transduction. They influence 
cellular growth, differentiation, and 
survival. 

N 

36 

LCN2 
Increases the stability of MMP-9. 
Transports small hydrophobic 
molecules. Also, influences iron 
transport and storage. 

N 

37 

LRRTM2 
A key regulator of excitatory 
synapse development and function 
of neurons. 

N 
38 

LTBP1 Regulates secretion and activation 
of TGF-betas.  

N 39 

MAP3K1 
The mutant version of this gene is 
associated with GBM and breast 
adenocarcinomas as well as head 
and neck squamous carcinoma. 

N 

40, 41 

MAST3 
This gene has a regulatory role on 
PTEN function by controlling its 
stability and phosphorylation status. 

N 
42 



METTL15 
The Mutant form is observed with 
adenocarcinoma and endometrioid 
carcinomas. 

N 
43 

MLLT11 
MLLT11 specifically binds to T-cell-
factor-7 (TCF7) in the Wnt signaling 
pathway and results in 
transcriptional activation of CD44 

N 

44 

NSF 
NSF is a cytoplasmic ATPase that 
disassembles the SNARE 
complexes. 

N 
45 

NUCB1 

EF-hand containing calcium-binding 
protein and a guanine nucleotide 
exchange factor for trimeric G 
protein, Giα that is required for 
unfolded protein response. The role 
of its GEF function remains 
unknown. 

N 

46 

OCIAD2 Down-regulated in Proneural GBM N 47 

P2RY12 
P2Y12 regulates platelet 
adhesion/activation, thrombus 
growth, and thrombus stability in 
injured arteries. 

N 

48 

PEX5L 
Mutant version observed in 
adenocarcinoma, embryonal 
rhabdomyosarcoma, endometrioid 
carcinoma, melanoma. 

N 

49, 50 

PIK3CA 

Catalytic subunit of 
Phosphatidylinositol 3-kinase. (PI3K) 
are a family of lipid kinases involved 
in diverse cellular signaling 
pathways, including proliferation, 
differentiation, migration, trafficking, 
and glucose homeostasis. 

N 

51 

PRKAR1B 
PKA stimulates the expression of 
the NR4 receptor, and NR4 is 
involved in several malignancies, 
such as glioblastoma. 

N 

52 

PRKY Pseudogene, target for nonsense-
mediated decay. 

N 
 

PROS1 Glycoprotein involved in cell 
adhesion. 

N 53 

PYGB 

The protein encoded by this gene is 
a glycogen phosphorylase found 
predominantly in the brain. The 
activity of this enzyme is positively 
regulated by AMP and negatively 
regulated by ATP, ADP, and 
glucose-6-phosphate. This enzyme 
catalyzes the rate-determining step 
in glycogen degradation. The mutant 
form is observed with 
adenocarcinoma, squamous-cell 
carcinoma, adenocarcinoma and 
clear-cell adenocarcinoma. 
 

N 

43, 54, 55 

SP3 
Bifunctional transcription factor. 
Activating Metalloproteinase 2 
expression in astroglioma cells. 

N 
56 



STAT5B 
Promotes oncogenesis and 
treatment resistance in glioblastoma 
by direct regulation of anti-apoptotic 
gene, Bcl-XL. 

N 

57 

TMEM106C 
The upregulation of this gene is 
associated with clinical stage III 
breast cancer. 

N 
58, 59 

VAMP7 

SNARE family transmembrane 
transport protein.Mediates secretory 
lysosome exocytosis, contributing to 
release of both ATP and cathepsin B 
from glial cells. 

N 

60 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 4. Cancer genes differentially expressed genes in 
patient and healthy donor samples.  

 

Gene 

Function Previuosly  

Identified 

in EVs 

Reference 

ANXA2R 
Up-regulation promotes proliferation 
of breast cancer cells; promotes 
hepatocellular cancer cell invasion 
and migration in vitro. 

N 

61, 62 

ATP2A3 Overexpression indicates cancer 
susceptibility. 

Y 63 

C8orf4 

Overexpression promotes 
proliferation of non-small cell lung 
carcinoma; high expression in 
ovarian carcinomas; high 
expression in 50 % of breast 
cancers; high expression in gastric 
cancers; down-regulated in 
metastatic colon cancer; 
overexpressed in thyroid 
carcinoma. 

N 

64-69 

C12orf75 Overexpressed in colon carcinoma. N 70 

CACTIN Present in spindle cell type/renal 
cell carcinoma. 

N 71 

CHIC2 
In some cases of acute myeloid 
leukemia found recombined to ETV-
6 gene. 

N 
72 

CRNN 

Altered expression in laryngo-
pharyngeal tumors; down-regulated 
in esophageal squamous cell 
carcinoma; present in head and 
neck squamous cell carcinoma. 

N 

73-75 

CTBS CTBS fusions seen in breast and 
ovarian cancer cell lines. 

N 76 

DEDD 
The expression is conversely 
related to poor prognosis in breast 
and colon cancer. 

N 
77 

DEFB4A 

Lower copy numbers are 
associated with susceptibility to 
cervical cancer; down-regulated in 
colon cancer; up-regulated in 
squamous and basal skin cell 
carcinoma. 

N 

78-80 

DEPTOR 

Down-regulated in pancreatic, 
colorectal cancer; up-regulated in 
differentiated thyroid carcinoma; 
down-regulated in basal-like/triple 
negative breast cancer; 
overexpressed in multiple 
myelomas. 

N 

81-85 

DERL2 Up-regulated in liver cancer. N 86 



ECE1 
Up-regulated in gastric cancers; up-
regulation in breast cancer reflects 
worse prognosis; up-regulated in 
malignant prostate cancer. 

N 
87-89 

ELOVL7 
Overexpressed in prostate cancer 
and required for prostate cancer-
cell growth. 

N 
90 

FAM110A Mesenchymal marker in non-small 
cell lung carcinoma. 

N 91 

FBXW5 Up-regulated in non-small cell lung 
carcinoma. 

N 92 

GGTA1P Expression can cause germ cell 
tumors. 

N 93 

GNG12-AS1 Down-regulated in breast cancer. N 94 

GP6 

This gene encodes a platelet 
membrane glycoprotein of the 
immunoglobulin superfamily. The 
encoded protein is a receptor for 
collagen and plays a critical role in 
collagen-induced platelet 
aggregation and thrombus 
formation. 

N 

95 

GSN Down-regulated in breast 
pancreatic, and bladder cancer. 

N 96-99 

IKBKE 

Breast and prostate cancer 
oncogene; up-regulated in 
squamous lung cell carcinoma; 
promotes metastasis in ovarian 
cancer.   

N 

100-103 

MFAP3L Activation promotes colorectal 
cancer cell invasion. 

N 104 

NCKAP1 
Variations of expression are 
associated with poor prognosis in 
breast cancer patients. 

N 
105 

OCIAD2 
Highly expressed in 
bronchoalveolar carcinoma; highly 
expressed in ovarian cancers.  

N 
106, 107 

PCBP1 
Essential for cancer stem cells of 
prostate cancer; essential for 
epithelial-mesenchymal transition in 
gastric cancer. 

N 
108, 109 

PRKAR2B Down-regulated in 
cholangiocarcinoma. 

N 110 

PTCRA Essential for T-cell leukemogenesis 
in T-cell lymphoblastic leukemia. 

N 111 

QPCT Up-regulated in thyroid carcinoma. N 112 

RBBP9 Elevated activity in pancreatic 
cancer. 

N 113 

SELP 
Expressed on activated endothelial 
cells and platelets; mediates 
adhesion and seeding of cancer 
cells. 

N 
114 

SMOX Down-regulated in breast cancer; 
up-regulated in prostate cancer. 

N 115, 116 

SSX2IP 
Up-regulated in hepatocellular 
carcinoma; upregulated in 
melanoma, colon, and breast 

N 
117-119 



cancer; upregulated in acute 
myeloid leukemia.  

ST6GALNAC2 
High expression in mammary 
phyllodes tumor; reflects 
tumorigenicity. 

N 
120 

STX11 Acts as a tumor suppressor in 
peripheral T-cell lymphomas. 

N 121 

TLR5 

Up-regulated in non-small cell lung 
carcinoma; upregulated in 
squamous cell carcinoma of the 
tongue; command TLR5 mutations 
in cancer progression. 

N 

122-124 

UAP1 Overexpressed in prostate cancer; 
amplified in liposarcoma. 

N 125, 126 

UROD Overexpressed in head and neck 
cancer. 

N 127 

VEPH1 Potential effect on ovarian cancer.  N 128 

WDR26 Promotes breast cancer. N 129, 130 
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